Wednesday, August 5, 2020

Tag: Nerve Regeneration

Regeneration of Neural Connections After Spinal Cord and Optic Nerve Damage

Published: May 5, 2020

Spinal cord injuries can have lasting and devastating effects on mobility and cognitive function due to permanent nerve cell damage or death. A new study from researchers at Temple University now shows how neuronal connections can be regenerated after such injuries.

Neurons contain structural appendages called axons which form connections with each other throughout the brain and greater parts of the body. These axons form an interconnected communication system that regulates sensory and motor functions; injury to axons can result in their breakage, leading to irreversible damage.

Research Identifies a Protein for Tissue Repair After the Spinal Cord Injury

Published: March 4, 2020

Recently researchers discovered an axon guidance protein known as Plexin B2 in the central nervous system (CNS). During the spinal cord injury, this protein plays a significant role in the healing of the wound and neural repair.

The experiment was designed and conducted by the Icahn School of Medicine at Mount Sinai. This study could help the development of the treatments or therapies which target axon guidance pathways for treating the patients of Spinal cord injury more effectively.

Increasing Energy Supply in Injured Spinal Cord Nerves May Help Promote Axon Regrowth

Published: March 3, 2020

Scientists at the National Institutes of Health (NIH) and the Indiana University School of Medicine report that increasing energy supply within injured spinal cord nerves in mice could help promote axon regrowth and restore some motor functions. The study “Restoring cellular energetics promotes axon regeneration and functional recovery after spinal cord injury,” appears in Cell Metabolism.

Can an Active Lifestyle Improve Recovery After a Spinal Cord Injury?

Published: January 23, 2020

Permanent neurological impairments can occur after spinal cord injury (SCI) due to the failure of the spinal cord motor and sensory axons to regenerate.

This is because the mammalian central nervous system (CNS), unlike in some amphibians and reptiles, has inhibitory molecules blocking growth post-development, as well as the lack of an effective regenerative response system. Within the peripheral nervous system (PNS), there is some limited axonal recovery that can occur naturally.

Immune cells could hold key to therapies for spinal cord injuries

Published: November 7, 2018

Fresh insights into how Zebrafish repair their damaged nerve connections could aid the development of therapies for people with spinal cord injuries.

Scientists have found the immune system plays a key role in helping Zebrafish nerve cells to regenerate after injury.

The findings offer clues for developing treatments that could one day help people to regain movement after spinal cord injury.

Researchers repair acute spinal cord injury in monkeys

Published: June 5, 2018

Spinal cord injuries are among the most severe and difficult-to-treat medical conditions, usually resulting in permanent disability including loss of muscle function, sensation and autonomic functions. Medical research is now on the cusp of treating severe spinal cord injuries by inducing the repair of spinal nerves, and scientists have made strides in recent years with rodents and primates.

Using chitosan loaded with neurotrophin-3 (NT3), a collaborative of Chinese medical researchers now reports the successful treatment and subsequent functional recovery of rhesus monkeys with induced acute spinal cord injuries.

Scientists discover new way to help nerve regeneration in spinal cord injury

Published: December 11, 2017

There is currently no cure for spinal cord injury or treatment to help nerve regeneration so therapies offering intervention are limited. People with severe spinal cord injuries can remain paralysed for life and this is often accompanied by incontinence.

A team led by Drs Liang-Fong Wong and Nicolas Granger from Bristol’s Faculty of Health Sciences has successfully transplanted genetically modified cells that secrete a treatment molecule shown to be effective at removing the scar following spinal cord damage. The scar in the damaged spinal cord typically limits recovery by blocking nerve regrowth.

Molecule shown to repair damaged axons

Published: March 8, 2017

Discovery could be key to treating brain and spinal cord injury

A foray into plant biology led one researcher to discover that a natural molecule can repair axons, the thread-like projections that carry electrical signals between cells. Axonal damage is the major culprit underlying disability in conditions such as spinal cord injury and stroke.

Andrew Kaplan, a PhD candidate at the Montreal Neurological Institute and Hospital of McGill University, was looking for a pharmacological approach to axon regeneration, with a focus on 14-3-3, a family of proteins with neuroprotective functions that have been under investigation in the laboratory of Dr. Alyson Fournier, professor of neurology and neurosurgery and senior author on the study.

Gene Behind Long Body Of Snake May Help Patients With Spinal Injuries

Published: August 9, 2016

snake-OCT4Snakes owe their long and slithery bodies to “junk DNA,” large chunks of the reptile’s genome that scientists once thought to be useless. The gene called Oct4 may eventually help treat people with spinal injuries.

Oct4 is responsible for regulating stem cells and affects the growth of the trunk in the middle part of a vertebrate’s body.

Study researcher Rita Aires, from Portugal’s Instituto Gulbenkian de Ciencia (IGC), explained that genes involved in the formation of the trunk have to stop their activities so that the genes that are involved in tail formation can begin their work.

Discovery in roundworms may one day help humans with spinal cord injury and paralysis

Published: April 11, 2016

roundworms may help paralysisA newly discovered pathway leading to the regeneration of central nervous system (CNS) brain cells (neurons) in a type of roundworm (C. elegans) sheds light on the adult human nervous system’s ability to regenerate.

The findings, which appear online in the Proceedings of the National Academy of Sciences, soon may lead to treatments that enhance nerve cell regeneration in humans with spinal cord injury and paralysis.