Wednesday, February 26, 2020

Tag: Mark Tuszynski

Created Line of Spinal Cord Neural Stem Cells Shows Diverse Promise

Published: August 6, 2018

Derived from human pluripotent stem cells, these diverse cells advance disease modeling and may provide new, scalable source of replacement cells for spinal cord injuries

Researchers at University of California San Diego School of Medicine report that they have successfully created spinal cord neural stem cells (NSCs) from human pluripotent stem cells (hPSCs) that differentiate into a diverse population of cells capable of dispersing throughout the spinal cord and can be maintained for long periods of time.

In a break with dogma, myelin boosts neuron growth in spinal cord injuries

Published: May 23, 2018

The molecule inhibits adult axon regeneration, but appears to stimulate young neurons

Recovery after severe spinal cord injury is notoriously fraught, with permanent paralysis often the result. In recent years, researchers have increasingly turned to stem cell-based therapies as a potential method for repairing and replacing damaged nerve cells. They have struggled, however, to overcome numerous innate barriers, including myelin, a mixture of insulating proteins and lipids that helps speed impulses through adult nerve fibers but also inhibits neuronal growth.

It’s Not a Rat’s Race for Human Stem Cells Grafted to Repair Spinal Cord...

Published: August 28, 2017

Lengthy study finds that implanted neural stem cells grow slow and steady, and success needs to be measured accordingly

More than one-and-a-half years after implantation, researchers at University of California San Diego School of Medicine and the San Diego Veterans Administration Medical Center report that human neural stem cells (NSCs) grafted into spinal cord injuries in laboratory rats displayed continued growth and maturity, with functional recovery beginning one year after grafting.

Neural stem cells regenerate axons

Published: September 13, 2012

SAN DIEGO — In a study at the University of California, San Diego and VA San Diego Healthcare, researchers were able to regenerate “an astonishing degree” of axonal growth at the site of severe spinal cord injury in rats. Their research revealed that early stage neurons have the ability to survive and extend axons to form new, functional neuronal relays across an injury site in the adult central nervous system (CNS).

The study also proved that at least some types of adult CNS axons can overcome a normally inhibitory growth environment to grow over long distances. Importantly, stem cells across species exhibit these properties. The work will be published in the journal Cell on Friday (Sept. 14).

Do NOT follow this link or you will be banned from the site!