Wednesday, November 25, 2020

Tag: glial scar

Scar-free healing after spinal cord injury relies on specialized cells

Published: October 8, 2020

One of the reasons people rarely recover from spinal cord injury is the scar tissue that develops, preventing nerve cells from reconnecting. But a new study from Zhigang He, PhD, of the F.M. Kirby Neurobiology Center at Boston Children’s Hospital, demonstrated a way to minimize scar cell formation in adult mice after a spinal cord injury. The study, published in Nature, offers insights for new approaches to treating spinal cord injuries.

Re-engineered enzyme could help reverse damage from spinal cord injury and stroke

Published: August 24, 2020

A team of researchers from University of Toronto Engineering and the University of Michigan has redesigned and enhanced a natural enzyme that shows promise in promoting the regrowth of nerve tissue following injury.

Their new version is more stable than the protein that occurs in nature, and could lead to new treatments for reversing nerve damage caused by traumatic injury or stroke.

Promising therapeutic approach for spinal cord injuries

Published: March 1, 2018

The healing ability of the central nervous system is very limited and injuries to the brain or spinal cord often result in permanent functional deficits. Researchers at Karolinska Institutet report in the scientific journal Cell that they have found an important mechanism that explains why this happens. Using this new knowledge, they were able to improve functional recovery following spinal cord injury in mice.

In many organs, damaged tissue can be repaired by generating new cells of the type that were lost.

Scientists discover new way to help nerve regeneration in spinal cord injury

Published: December 11, 2017

There is currently no cure for spinal cord injury or treatment to help nerve regeneration so therapies offering intervention are limited. People with severe spinal cord injuries can remain paralysed for life and this is often accompanied by incontinence.

A team led by Drs Liang-Fong Wong and Nicolas Granger from Bristol’s Faculty of Health Sciences has successfully transplanted genetically modified cells that secrete a treatment molecule shown to be effective at removing the scar following spinal cord damage. The scar in the damaged spinal cord typically limits recovery by blocking nerve regrowth.

Spinal cord regeneration might actually be helped by glial scar tissue, contrary to conventional...

Published: March 30, 2016

Regeneration IllustrationUCLA research finds that nerve cells regrow better when glial scarring is left intact

Neuroscientists have long believed that scar tissue formed by glial cells — the cells that surround neurons in the central nervous system — impedes damaged nerve cells from regrowing after a brain or spinal cord injury. So it’s no wonder that researchers have assumed that if they could find a way to remove or counteract that scar tissue, injured neurons might spontaneously repair themselves.

A new study by UCLA scientists now shows that this assumption might have been impeding research on repairing spinal cord injuries.