SUBSCRIBE: RSS Feed for Spinal Cord Injury Zone Email Updates Follow Spinal Cord Injury Zone on Twitter Spinal Cord Injury Zone on Facebook

Articles Tagged: Medical Research

Feinstein Institute study sheds light on combating infections tied to spinal cord injury

Published: January 12, 2018 | Category: News

Dr. Ona E. Bloom, Feinstein Institute for Medical Research , associate professor has uncovered that white blood cell genes are present at different levels in people with spinal cord injury.

These findings, published yesterday online in the “Journal of Neurotrauma,” are a first step to understanding and developing better interventions for infections in people with spinal cord injury, which is the leading cause of death in these individuals. Continue Reading »

Spinal cord injury affects the heart

Published: December 13, 2017 | Category: News

Spinal cord injury affects the heart, that’s what research published in Experimental Physiology and carried out by researchers from University of British Columbia, Canada has found.

The heart undergoes changes after spinal cord injury that are dependent on how severe the spinal cord injury is but only a small amount of “sparing” (i.e., a small number of nerve fibers preserved) in the spinal cord are necessary for the heart to function at a near normal level. Continue Reading »

It’s Not a Rat’s Race for Human Stem Cells Grafted to Repair Spinal Cord Injuries

Published: August 28, 2017 | Category: News

Lengthy study finds that implanted neural stem cells grow slow and steady, and success needs to be measured accordingly

More than one-and-a-half years after implantation, researchers at University of California San Diego School of Medicine and the San Diego Veterans Administration Medical Center report that human neural stem cells (NSCs) grafted into spinal cord injuries in laboratory rats displayed continued growth and maturity, with functional recovery beginning one year after grafting. Continue Reading »

Drug aims to help treat spinal cord injuries

Published: July 25, 2017 | Category: News

Researchers at ReNetX Bio are hoping a new name, the potential for a new influx of cash on the horizon and a new chief executive officer are the winning combination needed to bring its lead drug candidate to market.

ReNetX Bio is looking to guide its drug candidate, Nogo Trap, through its first round of clinical trials. Company officials say Nogo Trap is designed to help patients with chronic spinal cord injury. Continue Reading »

Lab-Grown Neurons Could Help Heal Spinal Injuries and Restore Movement

Published: April 26, 2017 | Category: Featured News Videos

Researchers grew human spinal cord neurons from stem cells and injected them into healthy mice, where they successfully connected with other neurons. Continue Reading »

Shirley Ryan AbilityLab

Published: April 11, 2017 | Category: Links

www.sralab.org

As the #1 referral choice for SCI patients from all over the world, we are renowned for innovative, interdisciplinary care. By integrating advances in research and technology, we continuously enhance medical and functional outcomes.

You want to recover what’s most important in your life — be it mobility, independence or walking again. Together we reach for those goals.

Doctors and nurses in our Spinal Cord Innovation Center provide specialized care. Our state-of-the-art Ability Labs infuse science into treatment. The goal: helping you get your life back. Continue Reading »

Brain implants allow paralysed monkeys to walk

Published: November 9, 2016 | Category: Featured News Videos

Swiss researchers travel to China to conduct pioneering experiment.

For more than a decade, neuroscientist Grégoire Courtine has been flying every few months from his lab at the Swiss Federal Institute of Technology in Lausanne to another lab in Beijing, China, where he conducts research on monkeys with the aim of treating spinal-cord injuries. Continue Reading »

Human Neuron Transplants Treat Spinal Cord Injury in Mice

Published: September 22, 2016 | Category: News

mge_spheroidsChronic pain and loss of bladder control are among the most devastating consequences of spinal cord injury, rated by many patients as a higher priority for treatment than paralysis or numbness. Now a UC San Francisco team has transplanted immature human neurons into mice with spinal cord injuries, and shown that the cells successfully wire up with the damaged spinal cord to improve bladder control and reduce pain. This is a key step towards developing cell therapies for spinal cord injury in humans, say the researchers, who are currently working to develop the technique for future clinical trials. Continue Reading »

Scientists pinpoint molecular signal that drives and enables spinal cord repair

Published: March 17, 2016 | Category: News

lesion core after a spinal cord injuryResearchers from King’s College London and the University of Oxford have identified a molecular signal, known as ‘neuregulin-1’, which drives and enables the spinal cord’s natural capacity for repair after injury.

The findings, published today in Brain, could one day lead to new treatments which enhance this spontaneous repair mechanism by manipulating the neuregulin-1 signal.

Every year more than 130,000 people suffer traumatic spinal cord injury (usually from a road traffic accident, fall or sporting injury) and related healthcare costs are among the highest of any medical condition – yet there is still no cure or adequate treatment. Continue Reading »

Study Identifies Specific Gene Network That Promotes Nervous System Repair

Published: February 18, 2016 | Category: News

UCLAFindings by UCLA-led collaboration are an early step toward potential treatments for injuries to the central nervous system

Newswise — Whether or not nerve cells are able to regrow after injury depends on their location in the body. Injured nerve cells in the peripheral nervous system, such as those in the arms and legs, can recover and regrow, at least to some extent. But nerve cells in the central nervous system — the brain and spinal cord — can’t recover at all. Continue Reading »